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Abstract Gravity may be a quantum-space-time effect. General relativity is quantized by
small generic changes in its commutation relations that make its Lie algebras simple on all
levels, positing extra variables frozen by self-organization as needed. This quantizes space-
time coordinates as well as fields and eliminates physical singularities. Fermi statistics and
sl(nR) Lie algebras are assumed for all levels. Spin 1/2 is taken to be anomalous, arising
from vacuum organization; the spin-statistics relation is incorporated. The gravitational field
is quartic in Fermi variables. Einstein’s non-commutativity of parallel transport emerges as
a vestige of Heisenberg’s quantum non-commutativity near the classical limit.

1 Background

Here I simplify general relativity. That is, I make its Lie algebras simple by a small contin-
uous variation or homotopy. This requires vacuum organization analogous to crystallization
and ferromagnetism, also suggested by the Higgs field, cosmological inflation.

The simplification strategy quantizes space-time and its deeper structures as well as the
fields on it. Several people suggested that space-time might have quantum structure in the
early years of the quantum theory. Feynman (ca. 1941) considered the possibility that space-
time coordinates were sums of many Dirac spin operators [17]:

xμ = γ μ(1) + · · · + γ μ(n). (1)

Definition 1 A Feynman space is a quantum space whose coordinate algebra is a Clifford
algebra.

The quantum spaces proposed in this paper are Feynman spaces; their Clifford algebras are
Fermi(–Dirac) algebras.
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Snyder (1947) constructed a Lorentz invariant theory with a discrete spectrum for
all spacelike coordinates and a continuous one for all timelike coordinates and energy-
momentum variables, with a homotopy to the usual classical space-time Lie algebra [41].
No working field theory was built upon Snyder space, mainly for lack of a guiding principle.

Segal (1951) provided one. He pointed out that quantum mechanics and special relativity
both result from previous theories by continuous variations that carry singular compound
Lie algebras toward generic (structurally stable) ones, perhaps even simple ones, which
he showed to be stable. He proposed that one should complete the structural stabilization
process that quantization began [38]. Segal may have discarded his idea but it influenced
the classic studies of Inönü and Wigner on contraction and the Galilean limit [27], and Ger-
stenhaber’s cohomological theory of Lie algebra stability [25]. These in turn had numerous
consequences, many of which I first encountered at this meeting [34]. Others found and used
the Segal homotopy independently of Segal [1, 10, 28–30, 32, 35, 42].

Penrose (1971) first quantized a geometric manifold, namely the Euclidean sphere S2, as
opposed to a phase space [36]. He replaces the infinitude of infinite tangent planes of the
sphere by a finite Bose combination of spins 1/2.

This catalyzed other works, including my own reconstruction of Minkowski space-time
as a quantum set [19]. That too ignored structural stability and vacuum organization, but has
evolved into the present theory.

Flato (1977) used Lie algebra homotopy deeply in deformation quantization indepen-
dently of Segal and Gerstenhaber [5–7, 24]. Deformation quantization does not consider
structural stability or vacuum organization but retains a singular classical manifold that sta-
bilization would eliminate. Simplification and deformation quantization both use homotopy
importantly but on diverging paths.

Palev (1977) [35] took a major step toward a stable quantum physics by simplifying the
compound algebra of Bose statistics.

Definition 2 A Palev statistics is one whose commutation relations are those of a classical
Lie algebra and approach the Bose relations in a singular limit.

A Palev statistics can be substituted for Bose statistics everywhere with only small experi-
mental consequences in the present experimental regime.

Vilela-Mendes (1994) found what many had long sought: an atomistic space-time near
Minkowski space-time [43]. Inspired by the work of Gerstenhaber, he carried out a structural
stabilization of Minkowski space-time and its Heisenberg–Poincaré Lie algebra, positing a
fundamental length to set the quantum scale and a suitably large integer to fix the represen-
tation.

Definition 3 Vilela-Mendes space is a quantum space with preferred coordinates generating
a representation of so(6;σ) with signature σ = 0 or 4.

The generalization to other classical Lie groups having the Poincaré group as a singular
limit is clear; I will refer to such a quantum spaces as a generalized Vilela-Mendes space.
It is a Matrix Geometry [16] without its connections and gravity. It is more matrix than the
Banks Matrix Model [3] in that its time variable too is a matrix. It combines and unifies the
homotopies of Einstein, Heisenberg, de Sitter, and Snyder, who ignored structural stability.
Its points could be Palev combinations of simpler spinlike quantum elements.

Baugh (2004) simplified the Poincarë group to a special unitary group SU(n) indepen-
dently of Palev and Vilela-Mendes. The quantum event of Baugh space can be represented
as a pair of Palev sub-events, each with ket space 6C [4].
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Shiri-Garakani (2005) simplified a linear dynamics, that of a harmonic oscillator
[39, 40]. Structural stability forbids any one-parameter unitary group of time translations,
for the Newton commutation relation [d/dt, t] = 1 is unstable, and the group U(1) is not
simple or stable. At the extremes of system time t , when t ∼ ±max |t |, the multiplicities
of the eigenvalues of |t | typically vary rapidly, linearly in t ∓ max |t | and unitarity is a bad
approximation, but in the middle times, when |t | � max‖t |, unitarity can still be a useful
approximation. The usual singular limit keeps only the middle times and so is unitary.

Section 2 formulates a concept of simplification appropriate for a nonlinear field theory.
Section 3 simplifies the Einstein space and group of general relativity. Section 4 simplifies
the Einstein gravity kinematics and discuss the spin-statistics correlation. Section 5 proposes
a simplification of the Einstein-Hilbert dynamics.

2 Simple is Stable

Definition 4 A simplification is a homotopy of the structure tensor of a Lie algebra leading
to a simple Lie algebra.

Simple Lie algebras are structurally stable (stable, rigid, generic) in that nearby ones are
isomorphic.

Simplification is an ill-defined inverse process, like quantization. It goes beyond canon-
ical quantization and has more possible outcomes. The direct process is unsimplification,
contraction, flattening, the singular limit. Simplification does not preserve the symmetry
group of the flattened structure identically, like renormalization, nor break it completely,
like lattice regularization, but varies the group slightly, so that it can remain consistent with
past experiments.

Structural stability correlates with dynamical stability. If the Lie algebra elements are to
be observables, some compound groups (that is, non-semisimple groups) of present physics
force us to infinite-dimensional matrices, in which an energy spectrum can be unbounded
below, like those of the classical hydrogen atom and the Dirac one-electron quantum the-
ory. This infinity permits the dynamical instability of unending radiative decay. Any nearby
simple group has finite-dimensional representations in which all observables have finite
bounded spectra and such dynamical instabilities are impossible.

Almost all quadratic forms are regular, almost all matrices have inverses, almost all de-
terminants are non-zero. Infinities are exceptional, rare; singularity is singular. Experiments,
however, have error bars; experiment is generic. Therefore a singular theory is not based en-
tirely on experiment but also postulates some structure of probability 0, usually an idol in
the Baconian sense that has become invisible from habituation. This postulation both facili-
tates the calculations and corrupts them. Infinity in, infinity out. Present physical spaces are
built with infinitely many infinite tangent planes and produce infinities. Quantum spaces of
simple theories are built instead from finitely many finite quantum elements like spins and
produce finite answers.

One calls the singular structure a “contraction” of the regular one [27], although we do
not contract a sphere to form a plane, we expand it to infinite radius. People also call the
simple structure a “deformation” of the singular one, although here the simple is the norm
and the singular is the deformed.

Extra variables are variables that are required before we can simplify most Lie algebras
by homotopy, either totally new or replacing existing constants.
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For example, in his sole illustration, Segal simplified the Heisenberg commutation rela-
tions for one coordinate variable q and momentum p [38]. In his theory, i first stands for a
basis element of a real three-dimensional Lie algebra

h(1): qp − pq = i, iq − qi = 0, pi − ip = 0. (2)

The number i ∈ C enters when we represent h(1) in a complex Hilbert space. h(1) simplifies
to

so(3): qp − pq = r, rq − qr = αp, pr − rp = βq. (3)

Definition 5 A simplifier is an extra variable that permits the Lie algebra to be simplified
by a homotopy.

The extra variable in (3) is r .
Simplification strategy requires us to choose:

1. Simple Lie algebras. But few simple Lie algebras touch any compound Lie algebra of the
present physics. We can try them all.

2. Vacuum organization to freeze the simplifiers to constants, like aligned spins in a ferro-
magnet. One may be able to blame some structural instabilities of present-day physical
theory on vacuum organizations posited lately for the Standard Model and cosmology.

3. A representation of the Lie algebra. Usually there are infinitely many. For now I build
with Fermi algebras, which have unique faithful irreducible representations up to isomor-
phism. We must still choose how often to iterate Fermi combination. But the dimension
grows so explosively with iteration that even a rough count of dimensions can guide this
choice.

2.1 Unified Algebras

Simplification unifies the algebras of dynamical variables and space-time coordinates.
Heisenberg, emulating Einstein, set out to work solely with observables, and ultimately
encoded operations of observation in single-time operators Q of his quantum theory. But
his dynamical equations dQ(t)/dt = [H(t),Q(t)] concern not his alleged observables but
their histories, observable-valued functions of time Q(t). This theory is singular, like the
commutation relation [d/dt, t] = 1 of the differential calculus. To evade this singularity I
renounce the concept of instantaneous system in favor of system history. Then observables
act on simplified Dirac-Schwinger-Feynman probability amplitudes for histories forming a
finite-dimensional ket space. The formerly singular “sum over histories” is now merely a
finite-dimensional trace.

General covariance can be expressed as invariance under the diffeomorphism group of the
space-time manifold, whose Lie algebra is defined by singular relations like [∂μ, xν] = δν

μ.
This Lie algebra is unstable and must be expressed as singular limit of a stable one. We do
so, as prototype for all gauge theories.

Quantum mechanics has one product where classical mechanics had both a product and
a Poisson Bracket [26]. Simplification fuses products too. Canonical quantization fused the
commutative algebraic product of functions on phase space with the non-associative Poisson
bracket product of the same functions. Heisenberg recovered both products by expanding the
non-commutative algebra product of quantum mechanics in an � power series.

Simplification merges the inner product v · w of space-time vector fields and the non-
associative Lie Bracket [v,w]Lie. Both derive from two associative products of vector fields,
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as Clifford elements and as differential operators. These merge into one Fermi algebra prod-
uct of generic relativity. The ket space of the gravitational field is then a multivector space
for this Fermi algebra.

Simplification impels us to unify the algebras of field variables and coordinates as well.
Hilbert varied gravitational field variables gμν(x) without varying coordinates x = (xκ ).
In the resulting Poisson Bracket Lie algebra, gμν commutes with xκ . There are no such
coordinates in real life. The lattice of rods and clocks imagined by Einstein provides such
coordinates at low resolution but would obliterate the system at high resolution. Our actual
physical coordinates xμ are all based on weak signals, usually electromagnetic, that bring us
information about the intervening gravitational field as well as the remote event, as in the first
astronomical observations of the solar deflection of star images. Such physical coordinates
are more relative than general relativity imagined, being relative to the ambient field as well
as to the frame of reference. Coordinates in the small that commute with each other and the
gravitational field are unnatural in the canonical theory too [8, 9].

2.2 Unified Statistics

Standard q/c field theory is modular in construction, with at least the following stages along
the assembly line, defined by ket or sample spaces:

[F ]: The many-quantum or field operator history ψ̌(x).
[E′]: The single-quantum ket ψ(x).
[E]: The event coordinate x = ∫

dx.
[D]: The differential dx.

Once coordinates fail to commute, the usual field concept breaks down and needs repair.
I represent the simplified field as a combination of events. Its ket space is PV , where V is
the ket space for one quantum event and must provide both the field variables and space-
time coordinates of the singular limit. A theory is called q/c if it is quantum on the F level
and classical on the lower levels E,D, . . . ; and so forth. Since the simplified theory is q/q it
is not a unified field theory in the original c/c sense of Einstein, but is even more unified, in
that it eliminates the distinction between field and space-time as Einstein later advocated.

In a q/c theory, quite different combination processes must connect these levels of assem-
bly. Integration leads from [D] to [E], quantization from [E] to [E′], and statistics from [E′]
to [F ]. Each level has its own Lie algebras of variables and symmetries to simplify.

The Bohr correspondence principle effectively implies that a homotopy � → 0 connects
the dynamical or F levels of q/c theory to c/c theory. To quantize only the dynamical level,
however, as Heisenberg and Bohr did, breaks the structural relations to the lower levels.
A multilevel quantum theory can simplify and incorporate them, modifying them as needed
to improve agreement with experiment.

Definition 6 Deep simplification is the extension of the Segal simplification strategy to
levels of physics below and including the dynamical.

Where canonical quantization replaces the Poisson Bracket by the commutator of an infinite-
dimensional matrix algebra, deep simplification replaces Lie Brackets by commutators of a
simple finite-dimensional matrix algebra.

The prototype of multilevel descriptions is a classical algebra S of finite sets. It is a Grass-
mann algebra over the binary field 2, graded by cardinality, generated by these operations:

Association ι : s 	→ {s} forms unit sets.
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The product sN · · · s1 of a sequence of N factors represents the serial action of input
operations, and the disjoint union of sets, a partial AND operation, with (ιs)2 = 0. The sum
sN + · · · + s1 represents the parallel action of N terms, and the XOR operation.

0 ∈ S is the sum of no terms, the non-set; X = 0 means that X is not defined. 1 ∈ S is the
product of no factors, the empty set; X = 1 means that X is empty.

ι is Peano’s symbol. Glaserfeld and his school call it unitization since it converts any set
into a unit set.

The closest quantum correspondent to the set algebra S is a quantum set theory based
on Fermi statistics [20–23]. Its ket space VS is again a Grassmann algebra, now with coeffi-
cient field K = R or C instead of 2, graded by cardinality. It is generated by the following
operations.

Association is a linear operator ι† : VS → VS that maps any vector v ∈ S of level L into a
first-grade creation operator of level L + 1:

ι†v : VS → VS, VS 
 ψ 	→ v ∨ ψ ∈ VS. (4)

The set product becomes the Grassmann product, as for Fermi combination. VS also has an
addition operation vN + · · · + v1 of quantum superposition. 0 and 1 are as above.

Illustrations: If the un are disjoint unit sets, u1 + u2u3 inputs either u1 (of grade 1) with
relative probability ‖u1‖ or the union u2u3 (of grade 2) with relative probability ‖u2u3‖. The
usual symbol {a, b} translates into {a}{b}. In case the ket space V itself consists of products,
to generate the Grassmann algebra of V one first associates each element of V . This sepa-
rates products within braces, if any, from those outside them. Then we form polynomials in
the ι†v subject to (ι†v)2 = 0. The whole process is Fermi combination P.

The ket space of a Bose combination is P+V , the symmetric tensor algebra over ι†’V . Let
us call such functors from ket spaces of individuals to those of combinations combinators.
The combinators used here are P for sets, P for Fermi, P+ for Bose, and PR for Palev combi-
nations with representation R. Any quantum combinator P induces group and algebra finite
homomorphisms ΠP from the one to the many. It also induces a Lie algebra homomorphism
ΣP = dΠP from the one into the many. If s is an observable Σs is the cumulative sum of s

over all the copies of the system in the combination Πs.
In the following V is a vector space with coefficient field F = R or C, and V D is the dual

vector space to V , with typical elements v ∈ V , u ∈ V D:

Definition 7 [37] FV , the Fermi algebra over V , is the Clifford algebra over V ⊕ V D with
the quadratic form

‖u + v‖ = Reu(v). (5)

FV is the operator algebra of PV , and is generated by Fermi creation and annihilation
operators.

Each epoch defines its own stability construct. For example, Segal stabilized Lie algebras
against variations in the Lie product but not against departures from the Jacobi identity or
co-commutativity. Since these idealizations cause no infinities in the present theory, I retain
them. Fermi statistics is not defined by a Lie algebra, however, but by a Clifford algebra,
and requires separate consideration. A Clifford algebra is determined by a quadratic form.
A quadratic form is structurally stable if and only if it is regular. For Fermi statistics the
quadratic form is neutral, hence regular, so Fermi statistics is structurally stable for present
purposes.

Canonical quantization uses classical modes of combination on the deeper classical levels
and quantum on its quantum surface level. This disrupts interlevel relations; a combination
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of classical objects cannot be quantum. Deep simplification can preserve interlevel combi-
natorial relations.

The quantum event of Vilela-Mendes space has a Palev coordinate algebra as though its
event is a Palev pair. The Palev Lie algebra is the second-grade part of a Fermi algebra. That
is, we may adopt Fermi combination as the quantum correspondent of the power set functor
and as the deep statistics. This incorporates the spin-statistics correlation on the dynamical
level and only there. Palev events can be formed out of pairs of Fermi events. I assume this
is the origin of all bosons (Sects. 2.6, 2.3).

Segal’s three variables p,q, r generate the Lie algebra su(2) = so(3), in the A, B , and C

series. In higher (even) dimensions, however, one must choose between the A series su(n)

and the D series so(n) and also between the coefficient fields R and C. I assume this choice
of operator algebra must agree with the choice of statistics. The prime candidate is Fermi
statistics over the real field, based on these inconclusive indications:

1. Fermions exist.
2. Fermi combination accounts for Bose statistics as well, through Palev statistics.
3. The fundamental representations of the classical groups are Fermi combinations of the

“atomic” representations at the terminals of their Dynkin diagrams.
4. Fermi statistics is recursively applied to produce spinor fields, and accords with the em-

pirical spin-statistics correlation (Sect. 2.3).
5. Classical finite set theory, the prototype, is Fermi statistics over the binary field of coef-

ficients 2, recursively applied.
6. Fermi statistics is structurally stable.
7. The Clifford ring of classical gravity is a singular limit of a Fermi algebra.
8. The i of any complex quantum theory destabilizes its Lie algebra.

Assumption 1 All levels have Fermi statistics.

This does not commit us to expressing photons as pairs of neutrinos, as de Broglie proposed.
Palev combinations may form out of Fermi elements before the plenum organizes itself into
classical space-time and quantum fields. For multilevel Fermi statistics, Level L has the
ket space V [L] resulting from R by L iterations of Pι’. The ket space for Level [−1] is the
empty set {} and that for Level [0] is {} . . . , both trivial as vector spaces, with dimensions −1
and 0. The ket space for Level [L] has P L(1) dimensions where

P L+1(x) = 2PL(x), P (0) = 1. (6)

Kaluza and Klein imbued space-time with extra internal compact dimensions and created
the compactification problem: What compactifies these dimensions? In a fully quantum the-
ory events some coordinates serve as field variables and others as space-time coordinates in
the singular limit, all on the same footing in the generic theory. Two events can be combina-
tions linked by a common element, like pinned trusses. They can link along four dimensions
of their ket space to form the macroscopic space-time dimensions, leaving all other dimen-
sions comparable to the unit X, like a soap bubble or trussed roof that is many units long in
one time direction and two space directions but only one unit thick in the remaining space di-
rection. This replaces the compactification problem by the extension problem: What makes
some dimensions grow to macroscopic sizes and not others? As with soap bubbles, this may
be a matter of the ambience and the structure and dynamical interaction of the elements.
I will not touch this problem here but proceed semi-empirically.



Int J Theor Phys (2008) 47: 534–552 541

Simplification eliminates non-generic singularities, including the Wronskian singulari-
ties of gauge theories and the singularities of propagators on the light cone. Instead of infi-
nite renormalization constants, simplification has finite quantum constants. Vilela-Mendes
space has three new homotopy parameters and quantum constants: in the present symbols,
a space quantum X, a momentum quantum P, and a large quantum number N, and the usual
quantum of angular momentum is � = XP.

The scalar meson in Minkowski space-time and general relativity both have infinite di-
mensional Lie algebras whose elements depend on arbitrary functions, for example func-
tions of time. Simplification shrinks these Lie algebras to high but finite dimensionality.

2.3 Spins Are Fermi Combinations

A spin 1/2 is a Fermi combination of creation/annihilation operators of an integer-spin
quantum. More algebraically put:

Assertion 1 A spinor space of the orthogonal group SO(Vb) of some quantum b is the Fermi
algebra of Vb , acting on an isotropic vacuum.

Argument The assertion is not new but may have been forgotten. It is the core idea in the
classic spinor constructions of Brauer and Weyl, Cartan, and Chevalley [12–14]. Brauer and
Weyl liken theirs to “superquantification” by which they mean “second quantization” and
Fermi combination in particular. Recall that if W is a quadratic space, any minimal left ideal
of the Clifford algebra ClW is a spinor space for W . Otherwise put, the columns of matrices
representing ClW form a spinor space for W and its orthogonal group SO(W). The spinors
are the columns of the associated Grassmann algebra PW , hence Fermi kets.

This mathematical construction requires physical clarification. As a ket space for some
quantum b, W supports the vector representation of SO(W). In the Minkowski case, by the
spin-statistics correlation, a quantum entity b with ket space W would be a boson. In fact
the Dirac γ μ have odd commutation relations (statistics) and even spin. Again, the cited
authors form Fermi combinations of b, flouting the spin-statistics relation. The resulting
ket space PW , being itself an algebra, has the natural transformation law δLΨ = [S(L),Ψ ]
for all Ψ ∈ PW . But instead of the natural law spinors have the unnatural or anomalous
transformation law δLΨ = S(L)Ψ . If this spinor construction has physical meaning—and
let us suppose that it does if only for the sake of a reductio—then it omits some important
physical element that absorbs the right action of S(L). As mathematicians we evoke minimal
left ideals at will; as physicists we need a physical agent to conserve angular momentum.

The vacuum, the organized ambient plenum, serves. Suppose that a one-dimensional
vacuum projector Ω = Ω2 is invariant under an antisymmetric generator S(L), [S(L),Ω] =
0. Then S(L)Ω = 0 and

δLΨ Ω = S(L)Ψ Ω. (7)

That is, the natural spinors are not the multivectors of PW themselves but the vectors of
PW ’Ω . Now each part of the spinor construction has a physical counterpart.

1. L relates two experimenters in relative motion (say) assigning kets to some quantum
entity b of Level 2 with ket in W = Vb .

2. ΣL is the induced action of L on the generic Fermi combination of b’s with ket Ψ ∈ PW .
3. Ψ Ω applies the combination of creation operations represented by Ψ to a suitable

isotropic vacuum Ω .
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The spinor space S = 4R of Minkowski space-time is a square root of the Clifford algebra
C = 24 = S ⊗ SD of the space-time: 4 = √

16 (not just a square root of space-time as one
sometimes hears). The vacuum takes that square root in step 3. In the classic constructions
cited, especially Chevalley’s, Ω represents a full Dirac sea.

If this standard theory of spinors is to be taken seriously, as I do here, then electron
spin 1/2 is as anomalous as anyon spin 1/3. A spinor hides an action on the plenum. Spin
is a relative angular momentum of a Fermi combination of several even entities relative to a
coherently organized background Ω of many such entities, in the infinite limit.

2.4 Bosonization

It is especially easy to construct excitation quanta with Palev statistics out of a Fermi com-
bination.

Assertion 2 A Fermi combination includes a Palev combination.

Argument The vectors γα of the Fermi algebra are Fermi generators. The second-grade
tensors γα † γβ in that algebra are sl(V ) generators and therefore Palev generators that have
bosonic generators as singular limit. �

The even sub-algebra C+ ⊂ C of Fermi statistics can be interpreted as the ket space of a
combination with Palev statistics, composed of fermion-pairs γab , of even exchange parity.

To actually combine Palev quanta represented by such second-grade operators, one can-
not simply multiply the second-grade operators. That would lose the identities of the pairs in
the combination. To form a combination from the pair one must first associate them with ι,
producing grade-1 units. This is a Lie algebra homomorphism, preserving the commutation
relations. The associated pairs still have Palev statistics.

A field history F will be presented as a Fermi combination of events E that are in turn
Fermi combinations of differential events D:

F = PE − P2D. (8)

We encounter three levels [F ] ⊃ [E] ⊃ [D].

2.5 The Large Number Problem

There seems to be no sign of distinct space-time units in the range of sizes accessible today
between subnuclear and cosmic. It seems that a single Fermi combinator P must bridge from
subnuclear to macroscopic ket spaces, just as classically one integration x = ∫

dx carries us
from infinitesimal differentials to cosmological distances. However:

Assertion 3 The number of distinguishable events NE in the maximal field history F is not
greater than the dimensionality of the event ket space VE :

NE ≤ DimVE. (9)

Argument This follows at once from Assumption 1. �
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The successes of the continuum limit suggest that

P51 = 216 ∼ 105 � NE < DimVE < P61 = 2(216) ∼ 10(1010). (10)

DimVE is so large that I assume that the event E too is composite in the quantum theory
as in the classical, of differential elements D: VE = PVD . By Assumption 1 of basic Fermi
statistics,

DimVD ∼ log2 DimVE ∼ 216. (11)

We can manage with such low dimensionality if we remember that we can apply quantum
theory strictly only to a logarithmically small part of the universe; the meta-system including
the experimenter requires the rest. For example, even if the number of events in the “history
of the universe” were (say) ∼1020 000, and we could use essentially all of these for the labo-
ratory, the number NE of events in the maximum feasible quantum field history F that we
could control with maximal quantum resolution is no more than log2 NE ≈ 60 000, roughly
speaking. Then three levels of Fermi analysis suffice to bring us from the event level [E]
down to a level [B] of binary elements:

VE ∼ P3VB = 65 536 R. (12)

Nevertheless, for a combination of 60 000 Fermi events to be possible, the generic event
E must have ket space of at least 60 000 dimensions. Then the differential event D must
have kets of at least ∼16 dimensions. Since we are used to classical differentials with infi-
nitely many possibilities, 16 is a frighteningly small number, but I will follow this reasoning
through. Only 4 of the 16 dimensions develop to macroscopic space-time extension. I use
explicitly five nested floating levels [B] ⊂ [C] ⊂ [D] ⊂ [E] and fix them tentatively as the
Pn

R with 2 ≤ n ≤ 6.

2.6 General Spin-Statistics Correlation

For any entity ε of the dynamical level F , let X(ε) be the exchange parity of ε, the operator
that exchanges two ε kets in a combination Pε. Let W(ε) be the (Wigner) spin parity of ε,
representing a continuous rotation of an ε through 2π . W(ε) has eigenvalue +1 for even
spin in units of �/2 and −1 for odd. The observed spin-statistics correlation is

W(ε) = X(ε) (13)

for all quanta ε of the dynamical level.
Fermi combination converts one ε and its vector space of kets into a variable number of

ε’s and a multivector space of kets.

Assertion 4 Assumption 1 (of recursive Fermi statistics) is compatible with the spin-
statistics correlation.

Argument Since a spin 1/2 is an odd combination by Sect. 2.3, it has odd statistics by
Assumption 1. Since an integral spin is a combination of an even number of Fermi elements
it has even statistics. �
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3 Generic Covariance

General relativity replaces Minkowski space and the Poincarǵroup as a model for event
space by a collection of spaces with much larger groups:

Definition 8 The Einstein group GE(M) is the group of diffeomorphisms M → M of the
manifold M whose points represent physical events. The Einstein Lie algebra dGE(M) is
the Lie algebra of the Einstein group.

dGE(M) consists of the smooth real vector fields X = (Xμ(x)∂μ) on M, taken with the Lie
product X1 × X2 := [X1,X2].

Einstein based general relativity on covariance under the Einstein group; to maintain
correspondence I base general quantum relativity on generic covariance, covariance under a
simplification ĜE of the Einstein group GE(M).

3.1 Vilela-Mendes Space

I use these familiar structures:

Definition 9 The 2N + 1-dimensional Heisenberg Lie algebra

h(N): [pν, q
μ] = ir, [r,pμ] = 0 = [qμ, r]. (14)

The Heisenberg algebra AH(N): the algebra of bounded operators providing an irreducible
faithful unitary representation R�H(N) of h(N) with invariant r = i�.

Vilela-Mendes simplified h(N) to so(6;σ) =: so(V ) of signature σ with generators oαβ ∈
so(6;σ) [43]. I index the usual four axes of Minkowski space time with indices α = 1,2,3,4
and the two axes of the complex or symplectic plane with indices α = X,Y . A convenient
complete set of Vilela-Mendes admissible coordinates is

x̂α = Xoα X,

p̂α = PoαY ,

L̂αβ = x̂αp̂β − x̂β p̂α = XPoαβ,

ı̂ = N−1oXY

(15)

with scale factors X and P having the units of length and momentum. The quantum num-
ber N is the maximum eigenvalue of −ioXY in a chosen representation RJ of so(V ). The
contraction to classical space-time includes the limits

X,P → 0, N → ∞ (16)

and the freezing

−ioXY ≈ l. (17)

The classical Minkowski quadratic form is a singular limit of the Casimir operator of
the Vilela-Mendes Lie algebra so(6;σ). Designate the Casimir operator therefore by g. To
fit Vilela-Mendes space into the Fermi hierarchy I embed 0so(6R;σ) as a Lie subalgebra
within the real linear Lie algebra sl(6R) of the A series. The generators of the orthogonal
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group SO(V ) are antisymmetric matrices oαβ . This embedding adduces the traceless parts
of the real symmetric matrices sαβ .

Instead of the usual infinite-dimensional representation R� of the Heisenberg Lie alge-
bra h(N ) by differential operators, one must choose among an infinite number of finite-
dimensional representations RJ sl(6) of the linear Lie algebra 0sl(6) in sl(N), labeled by an
appropriate collection J of quantum numbers. In what follows, a circumflexed variable is
the RJ representative of the un-circumflexed variable. To reduce this choice, I restrict myself
provisionally to the (reducible) representations of 0sl(6) in the ket space Pκ6R that results
from κ generations of Fermi combination, starting from the ket space V = 6R on which the
defining representation of 0sl(6) acts.

A Vilela-Mendes quantum event can be a pair with Palev statistics constructed by several
stages of Fermi combination from a quantum element with ket space 6R of non-Euclidean
signature σ .

3.2 Reciprocity

Quantum events like those of Vilela-Mendes space or Baugh space have, in each admissible
frame, not only space-time coordinates but also momentum-energy and other coordinates,
mixed by the invariance group. This is counterintuitive since it relativizes the construct of
absolute space-time point that has pervaded physics since Aristotle. Events are supposed
to have space-time coordinates but no momentum-energy coordinates. Geometry may have
sprouted from the annually flooded Egyptian fields, where we can suppose that points began
as stakes and lines as linen strings, as etymology suggests. These had well-defined momenta,
that were small because they and the observer are both well-coupled to each other and to
one well-organized condensate, the Earth. A typical Baconian idolization seems to have
occurred [2]: Since the momenta were constant they disappeared. In space-time too all actual
probes have momentum coordinates that have disappeared. Quantum events restore these
energy-momentum variables and a symplectic symmetry between xμ and pμ at the event
level. Let us call this symplectic x − p symmetry reciprocity, though Born’s reciprocity
acted on a higher level [11]. Since xμ is local and pμ, being off-diagonal in xμ, is non-local,
reciprocity breaks locality in the quantum theory. To describe the organization of locality
I define a locality algebra homomorphic to 2R ⊗ 2R

D, the real version of the Pauli spin
algebra. It contains the seeds of locality and reciprocity as anticommuting operators.

Definition 10 The locality algebra is a 2 × 2 real matrix subalgebra of the algebra with
basis matrices

L0 =
[

1 0
0 1

]

, L1 =
[

0 1
1 0

]

, L2 =
[

0 −1
1 0

]

, L3 =
[

1 0
0 −1

]

(18)

regarded as defining a quantum space. In a basis of eigenvectors of locality like t and E, the
reciprocity L2 generates the transformation

L2: δxμ = pμ, δpμ = −xμ (19)

and the locality L3 generates the transformation

L3: δxμ = xμ, δpμ = −pμ. (20)
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The symmetric operator L1 = [L2,L3]/2 generates locality and breaks reciprocity. We
can call (18) the locality basis of the locality algebra, since the locality is diagonal.

In the Vilela-Mendes so(3,3;R) Lie algebra, one can reserve the first four basis vectors
1A (A = 1,2,3,4) for the usual Lorentz so(3;1;R) Lie algebra and the last two (A = X,Y )

for the locality algebra. Since the anti-symmetric operator LXY interchanges xμ and pμ, it
represents reciprocity L2; the Vilela-Mendes basis is a locality basis.

3.3 Einstein Group of Feynman Space

For quantization purposes, let us express the general covariance group (diffeomorphism
group) algebraically. General relativity, unlike special relativity, implicitly assumes that the
coordinates on physical space make up a commutative algebra.

Definition 11 The general relativity group or Einstein group E(N ) of a classical space-time
N (redefined) is the group of smooth local automorphisms of the commutative coordinate
algebra A(N ) of all coordinate functions on N .

Then to simplify the Einstein group it remains only to simplify the coordinate algebra it acts
on.

The fully quantum correspondent of that algebra is a full matrix algebra AE . By As-
sumption 1 this is the Fermi algebra AE = FVD over the ket space VD of the differential
event:

Assumption 2 (Generic relativity) The generic event E is a Fermi combination of differen-
tial events D.

This makes the event space a Feynman space.

Definition 12 Generic covariance is invariance under the simplified Einstein group GE =
SL(VE) and its representation on the higher level ket space VF = PVE .

GE must be distinguished from the automorphism group of sl(VE) ⊂ dGE , a much
smaller group relevant to special quantum relativity. The ket space VE = PVD of the event
has dimensionality ν := DimVE = 2DimVD . The special quantum coordinates of the event
form not an algebra but merely the Lie algebra sl(VE) ⊂ FVD , embedded in the Fermi alge-
bra by the representation

sl(VE) 
 λ 	→ 〈ι|λ|ι〉 ∈ FVE. (21)

The generic quantum coordinates form the algebra FVD . The generic relativity group G

is the group of the regular elements of FVD , modulo its center C.
This brings the groups of general relativity and quantum theory into alignment as plausi-

ble contractions of one generic relativity group SL(VE) with event ket space VE .
The main sequence of contractions or singular limits now proposed is

dĜE → sl((V )C) → h(4) → sl(2C). (22)

Classical and semiclassical general relativity lie on another line of contractions that dangles
from the left-most space of this sequence. This connects the diffeomorphism group of gen-
eral relativity and the unitary group of quantum theory. Both are plausible contractions of
the generic relativity group, along different contraction paths.
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By the assumption of Fermi statistics the kets of the physical event and the physical field
of generic relativity are spinor spaces of Clifford algebras and at the same time multivector
spaces of Fermi algebras. The choice of representation reduces to the choice of how many
times the Fermi combination P is iterated.

For the Fermi event E = PD with ket space V = VE , the quantum field history F = PE

has ket space VF = PVE and coordinate algebra AF = FV .
Every Fermi algebra FV has a Hermitian norm

‖x‖ := 1

N
Trx†x (23)

and a quadratic form

Q(x) := 1

N
Trx2. (24)

This quadratic form is indefinite, as is needed for physics, of signature N(N + 1)/

2 − N(N − 1)/2 = N , the square root of its dimension. For example, it is a Minkowskian
form of signature 2 on the 2 × 2 matrices.

4 Generic Covariant Kinematics

Einstein used a scalar-valued quadratic form g(v) := vμ′
(x)gμ′μ(x)vν(x) on space-time vec-

tors to describe gravity. Next we simplify this kinematics.
Riemann noted that manifolds do not metrize themselves, and supplied a metric “from

outside”. But Lie groups do; namely, with their Killing form. The generic g could arise
not from “outside” as in the Riemann–Einstein theory, but from the natural Killing form of a
lower level Lie algebra, as an order parameter of the ambient plenum. Indeed, the Minkowski
metrical form g(p) = gμνpμpν is a singular limit of the Casimir operator K of the ket space
V = 6R underlying Vilela-Mendes space. I infer:

Assumption 3 (Generic gravity) The correspondent in generic gravity of the gravitational
form g(p) is the operator

ĝ := Σ2K, (25)

where K is the Casimir operator

K = kABLALB (26)

of the representation in VF of the Lie algebra sl(VD) of Level [D], whose Killing form
is kAB .

This combines (3) for some lowest level with (2) for the field level, and excludes (1). To
relate this mathematics to the physics of moving bodies and clocks one observes that the
Killing form has the defining features of Minkowski’s quadratic form: It is invariant under
the special covariance group, now simple, and it reduces to proper time dτ 2 = dt2 in the
rest-frame of the singular limit. Before the singular limit there is no rest frame, since the
momentum variables do not commute and cannot be set to 0 all together except when all
are 0, and in the vacuum one variable oYX is as large as it can be.

This assumes that the generic correspondent of general relativization—the passage from
the Poincaré group to the general covariance group—may merely be another combination
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operation P. This fits with the fact that special relativity essentially has one quadratic form
while general relativity has an infinite number of tangent spaces each with its quadratic
form, all isomorphic but with no natural isomorphism.

In this generic quantum kinematics the gravitational field is not a function on a space-
time manifold but an operator on the ket space of a Fermi combination of events. The c
space-time manifold is an organization or condensation of the quantum event space.

5 Generic Covariant Dynamics

I may meaningfully assume that the dynamical history multivector is an exponential

Ω = eiA/� ∈ PVE (27)

where now A is an action multivector.
We need both an organized and disorganized effective action, each with its own symmetry

group. The organized handles processes that do not disorganize the ambient plenum; the
other for space-time meltdown and a principled approach to the organization itself. For the
organized action we can keep the form of the Hilbert action, which is only general covariant,
not generic covariant, resting as it does on several organizations, but replace the operators
in it by their generic forms.

I begin with the disorganized action A:

Assumption 4 The action A is generic covariant.

Assertion 5 The action A is a polynomial in the representatives on VF of the generators of
the Lie algebra so(VD).

Argument Clear. �

Einstein assumed that the dynamical law was expressed by wave equations of second
order in p ∼ ∂x . This led Hilbert to an action that is second order in the covariant differen-
tiator Dμ(x) but not in x, breaking reciprocity and preserving locality. If we imitate Einstein
and Hilbert too closely we too will break the reciprocity between x and p, violating generic
covariance and arriving at a organized action. We must sacrifice locality for reciprocity.

Following Einstein and Hilbert:

Assumption 5 The action is second-order in the generators of the group SU(VE).

Hilbert did not know that his action would eventually be multiplied by the imaginary i to
make the phase of a quantum probability-amplitude. For us that i is the frozen form of an-
other generator, oYX in Vilela-Mendes space, and DYX in the generic covariant version. The
Einstein-Hilbert imaginary action has differential order two from the organized viewpoint
but three from the disorganized viewpoint. We evade this complication for now by assuming
that space-time is a Feynman space.
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5.1 Space-Time as Feynman Space

Specifically, I use Level [B] to model the Lorentz group, identifying its ket space VB =
P2

R’Ω with the four-dimensional space of real Majorana spinors. To provide enough phys-
ical events in VE requires at least κ = 3 Fermi combinators: VE = P3VB . As represen-
tation space of sl(4R), VC = 2VB decomposes by grade into 16 = 1 + 4 + 6 + 4 + 1.
When we reduce sl(4R) → sl(2C), the 6 term reduces according to 6 = 1 + 4 + 1 where
4 supports the defining representation of the Lorentz group and 1 represents a Lorentz
scalar. We can conveniently use this 6 = 1 + 4 + 1 to represent the 6R underlying Vilela-
Mendes space, the 4 representing the usual space-time axes, and 1 + 1 the XY plane.
Later one might use the remaining 10 dimensions of VC for the defining representation
of sl(10) ⊃ so(10) ⊃ u(1) ⊕ su(2) ⊕ su(3) incorporating GUT.

P6
R has a richer algebra than the Vilela-Mendes space constructed purely with Palev

statistics. Hopefully the field ket space VF = P7
R is rich enough to describe both gravity

and its Fermi sources, and if so we should use the same ı̂ for both. The V-A weak interaction
suggests an imaginary unit of the form

ı̂ = N−1Σκγ �, κ � 3 (28)

whose seed is the top element γ � of its Clifford algebra. Level [2] is the only level whose
top element γ � = γ 4321 has the necessary negative square; then κ = 3 takes us to the event
level VE . I will use γ 4321 as the seed for ı̂ here.

Then one possible pre-organization action is the Casimir invariant of the simplified Ein-
stein group GE of the quantum event Level [E] as represented within the group GF of the
quantum field history Level [F ]. In more detail, let the infinitesimal special linear transfor-
mations λA be a basis for sl(E) and λ̂A = 〈ι|λA|ι〉 ∈ AF be the representation of λA in AF .
Then the Killing form is

kAB = Tr�λ̂A�λ̂B, (29)

and the action is the Casimir invariant K times a quantum constant with the units of action:

A = N�KABλ̂Aλ̂B (30)

with a possible dimensionless number N [18]. This action and ı̂ commute: they come from
seeds on different levels, whose generators anti-commute, and they both have even grade.
Each λ is quadratic in the Fermi creation/annihilation operators that generate VC from VB .
In a sense, (30) is a four-fermion model of the graviton. The combination of four odd quanta
into one even occurs below the space-time level, however, unlike four-neutrino proposals.

6 Discussion

The seminal suggestion of Segal [38] that physics evolves toward structural stability by
variations in its Lie algebras toward simplicity provides a constructive strategy for the-
ory building: Start from an empirical classical or canonical quantum theory that already
works reasonably well in its proper domain, make its Lie algebras simple by the least pos-
sible change in their structure tensors, and freeze out the extra variables that this generally
requires by positing vacuum self-organization. Perhaps one may think of this as building
“from the bottom down,” a concept that has influenced this work [31]. Taken seriously, it
leads us to quantum events, quantum differentials, and beyond. The photon, the quantum
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of the electromagnetic field, had to be verified several times to be generally accepted. The
quantum event requires at least as much verification, for it attacks even deeper continuity
assumptions. The three main gateways to the photon were:

1. Regularization. Planck first introduced the quantum constant h to eliminate the infinite
classical heat capacity of electromagnetic cavities and estimated it by fitting the cavity
spectral distribution.

2. One-photon observations. Einstein recognized Planck’s h as the action quantum of a
single photon and estimated it from the photoelectric effect, independently of Planck’s
estimate. Compton confirmed the photon and estimated h yet again by bouncing photons
off free electrons, one at a time.

3. Quantization. Dirac deduced the photon from the canonical commutation relations for
the electromagnetic field.

It is harder to isolate one event experimentally than one photon. Space-time is stiff, so
its events are strongly coupled, while cavity photons form an ideal gas and are negligibly
coupled. For now I used Gateways 1 and 3.

I propose that the macroscopic Clifford ring C(M) of classical gravity on a space-time
manifold M is a singular limit of an underlying Fermi algebra of generic gravity, modified
by a vacuum organization. The macroscopic Lie Bracket of classical gravity is a singu-
lar limit of the commutator Lie algebra of even-grade elements of this Fermi algebra. The
generic simplifications of the gravitational quadratic form and its action could be cumulative
forms of Casimir operators of lower-level Lie algebras.

Just as the Einstein group is the automorphism group of the Lie product, the generic
Einstein group is the automorphism group of the Lie algebra of the event ket space. This
group correspondence is the main tool of this paper, used to construct the generic covariant
gravitational kinematics of (25) and dynamics of (30).

To take this extension of relativity seriously we must overcome the enormous apparent
difference between space-time coordinates and momenta in our current experience. The dif-
ference boils down to the usual assumption that systems can make jumps in p but not in x;
or that fields are diagonal in x but not in p. In generic relativity this is a broken x ↔ p

reciprocity symmetry resulting from the organization of locality. To restore the broken reci-
procity we must sacrifice locality. Infinitesimal locality is not even defined for generic quan-
tum variables, which have discrete spectra. Quantum theory already permits us to inter-
change x and p by Fourier transformation. In Vilela-Mendes space, they are interchanged
by the operator oXY ; in Baugh space by oXY and sXY ; in Feynman space by γXY .

The spectral gap X in x also measures the size of non-local jumps in x. The locality that
we currently see reflects a difference in the ranges X and P of the quanta of x and p on
the scale of present quantum experiments, and the number of differentials entering into the
event.

I pause in the middle of things. Much remains to do: for example, to verify that classical
general relativity is indeed a singular limit of this heuristically constructed quantum theory,
to simplify the sources of gravity too, to describe the structure of the vacuum organization
posited here, and to work out more practical experimental differences from the singular
limit.
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